Freie Software und infektiöse Krankheiten: Von Rohdaten zu ökologischen Indikatoren

Markus Neteler Fondazione E. Mach – CRI, Italy http://gis.cri.fmach.it

In collaboration with: Markus Metz, Duccio Rocchini, Luca Delucchi, FEM **Luigi Ponti**, ENEA http://utagri.enea.it - CASAS http://cnr.berkeley.edu/casas

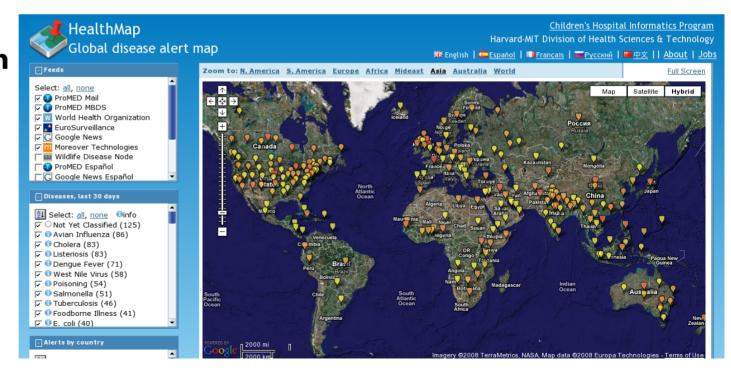
FOSSGIS Konferenz

20-22 März 2012

Fondazione Edmund Mach, Trento, Italy

- Founded 1874 as IASMA -Istituto Agrario San Michele all'Adige (north of Trento, IT)
- Research Centre, Tech. Transfer Center and highschool, 720 staff
- ... of those 300 staff in research (Environmental research, Agro-Genetic research, Food safety)

http://cri.fmach.eu/


The problem: Emerging infectious diseases in Europe and elsewhere

Focus on **zoonotic diseases**

- They are able to be transmitted from animals to humans, usually by a vector (e.g., ticks, mosquitoes)
- Both wildlife (e.g., roe and red deer, rodents) and domestic animals are reservoir hosts
- Zoonoses involve all types of agents (bacteria, parasites, viruses and others)

Zoonotic diseases cause **major health problems** in many countries.

They are driven by environmental and pathogen **changes** as well as political and cultural changes.

EDENext (FP7, 2011-2014) aims at generating knowledge on vectors and their biology relevant to human and veterinary diseases." (ticks, rodents, mosquitoes) addresses research questions to improve our understanding of:

- 1. Emergence and spread of vector borne diseases (VBD)
- 2. Intervention and control of VBD

Example Finland

Viral disease transmitted by rodents: haemorrhagic fever with renal syndrome (HFRS – Hantavirus)

Climate change effects:

- milder winters than in the past,
- less snow and more rain
- rodents take more refuge in houses and man made shelters: increase of human infection risk
- record epidemic peak during the winter of 2008-2009, with 3500 cases of HFRS for a total population of just over 5 million

European West Nile R&D collaborative project http://eurowestnile.isciii.es/ewn/

West Nile virus (WNV) is a flavivirus with potentially serious disease (but approx. 80% of WNV infections in humans without symptoms). Usually transmitted by mosquito bites.

EuroWestNile: Selected goals

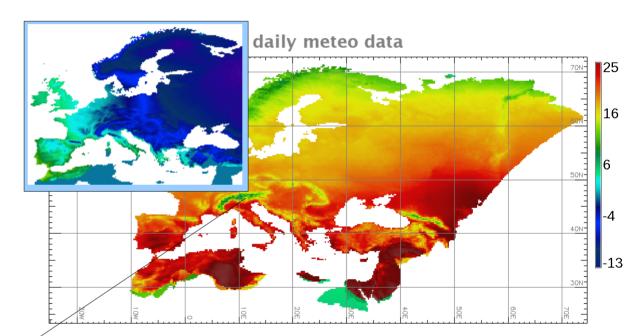
- Biobanks of West Nile like viruses, development of animal models for WNV research on pathogenicity, treatment and vaccine development
- Landscape primary data in different scenarios for WNV transmission
- Integrated data in mathematical models

Objectives PGIS and Ecohealth units @ FEM for 2012/2013

- Evaluate the **effect of temperature** on WNV transmission potential and the emergence of new foci
- Perform analysis of relationship between spring temperatures at European scale and following WNV appearance as a measure to identify disease risk ahead of WNV appearance.

GIS and Clima: Ecological variables from spatialized meteo data times series

Monthly Tmean: 1950-2010

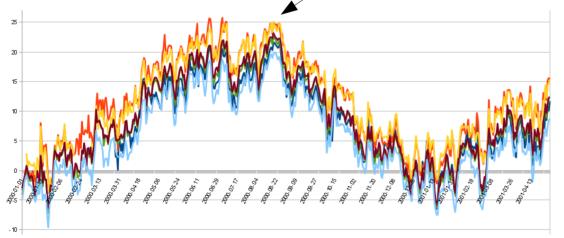

			Std.		
Climatic variable	Coefficients [§]	Value	Error	t value	Pr (> t
Annual total precipitation	All	-3.814	1.226	-3.112	**
	Pos	-1.477	2.027	-0.729	0.467
	Neg	-2.129	1.600	-1.331	0.185
	Diff.Pos.Neg	0.652	2.568	0.254	0.800
Annual min temperature	All	0.019	0.006	3.424	***
	Pos	0.005	0.010	0.535	0.593
	Neg	0.018	0.006	3.032	**
	Diff.Pos.Neg	-0.013	0.011	-1.134	0.257
Annual max temperature	All	0.034	0.005	7.524	***
	Pos	0.037	0.008	4.448	***
	Neg	0.028	0.005	5.499	***
	Diff.Pos.Neg	0.009	0.009	0.938	0.349

[§]All, slope for all provinces pooling data; Pos, slope for positive provinces; Neg, slope for negative provinces; Diff.Pos.Neg, difference in slopes between positive and negative provinces.

^{**}P≤0.01. ^{***}P≤0.001.

doi:10.1371/journal.pone.0004336.t003

(derived from EU Ensemble Gridded data ECAD)



http://eca.knmi.nl/

stat1 stat2 stat3 Mezzocorona_Novali Nago

Zortea

FEM meteo vs ECAD

FEM, Italy

ECAD Temperature data at regional scale

ECAD - European Climate Assessment & Dataset (http://eca.knmi.nl)

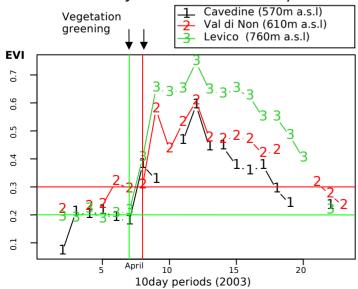
Resolution: 0.25 arcsec, 1950-2011 daily

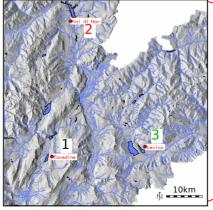
T mean map: 1 Jan 2010, Turkey subregion tmean 0 2 ECAD: • Advantages: long time series, daily 13.2 • Disadvantage: Low resolution for mountainous areas 11.9 Alternative datasets: 10.6 • CRU (0.5°, 1901-2006, monthly) • Worldclim (30 arcsec, 9.3 1950-2000, monthly) others 8.0

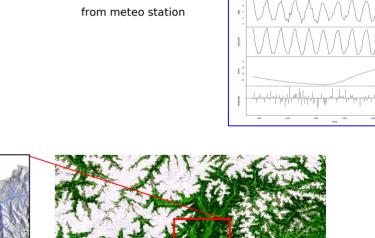
Klein Tank, A.M.G. and Coauthors, 2002. *Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment*. Int. J. of Climatol., 22, 1441-1453.

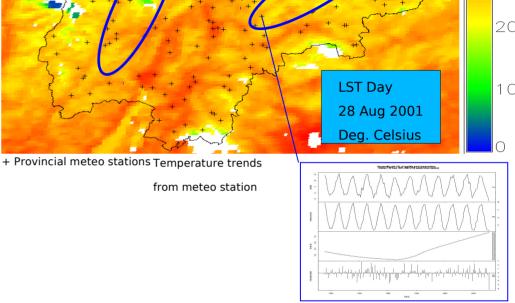
PGIS unit @ FEM, Trento

LAND SURFACE TEMPERATURE (LST) Data enhancements in complex Alpine terrain

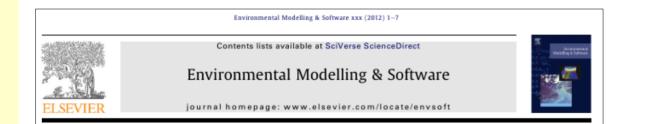



Batch processing of massive geodata


PGIS Linux cluster: 300 nodes, 34 TB raw space, GDAL + GRASS etc.


Enhanced Vegetation Index (EVI)

"Spring detection" example: Trentino 2003 Effect of valley orientation and exposition



mod i

39

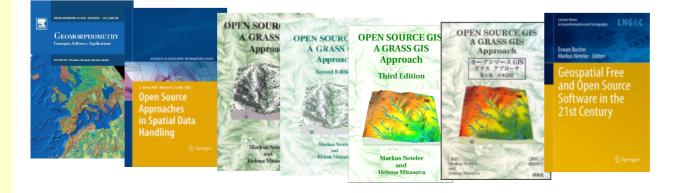
29

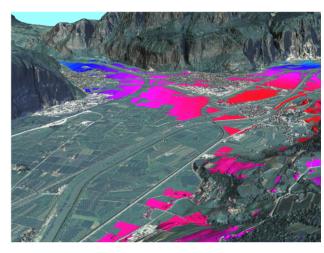
Desktop GIS & massive data analysis: GRASS GIS

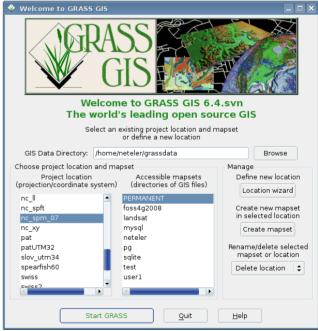
GRASS GIS: A multi-purpose open source GIS

Markus Neteler^{a,*}, M. Hamish Bowman^b, Martin Landa^c, Markus Metz^a

⁴ Biodiversity and Molecular Ecology Department, IASMA Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige (TN), Italy ^bDepartment of Marine Science, University of Otago, RO. Box 56, Dunedin, New Zealand ^cDepartment of Mapping and Cartography, Faculty of Civil Engineering, Cecch Technical University in Prague, Thakurova 7, 166 29 Prague, Czech Republic

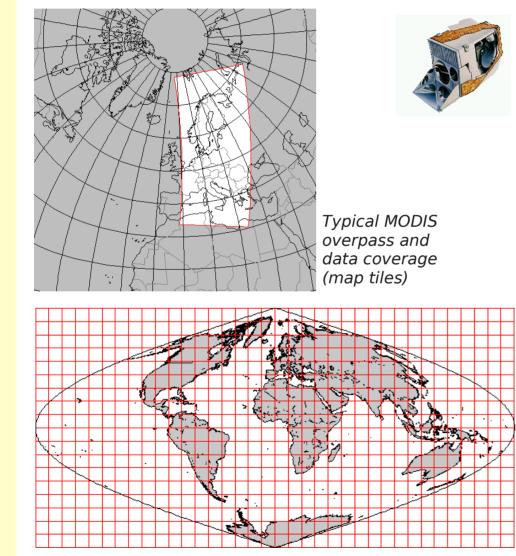

ARTICLE INFO


ABSTRACT


Article history: Received 20 November 2010 Received in revised form 19 November 2011 Accepted 26 November 2011 Available online xxx

Keywords: GIS GRASS OSGeo Open source Spatial analysis Remote sensing The GIS software sector has developed rapidly over the last ten years. Open Source GIS applications are gaining relevant market shares in academia, business, and public administration. In this paper, we illustrate the history and features of a key Open Source GIS, the Geographical Resources Analysis Support System (GRASS). GRASS has been under development for more than 28 years, has strong ties into academia, and its review mechanisms led to the integration of well tested and documented algorithms into a joint GIS suite which has been used regularly for environmental modelling. The development is community-based with developers distributed globally. Through the use of an online source code repository, mailing lists and a Wiki, users and developers communicate in order to review existing code and develop new methods. In this paper, we provide a functionality overview of the more than 400 modules available in the latest stable GRASS software release. This new release runs natively on common operating systems (MS-Windows, GNU/Linux, Mac OSX), giving basic and advanced functionality to casual and expert users. In the second part, we review selected publications with a focus on environmental modelling to illustrate the wealth of use cases for this open and free GIS.

© 2011 Elsevier Ltd. All rights reserved.



http://grass.osgeo.org http://www.grassbook.org

 \bigcirc

The MODIS Sensor: 11 years of data

The MODIS sensor on board of Terra and Aqua satellites

- Sensor with 36 channels in the range of optical light, near and thermal infrared:
 Vegetation state, snow, temperature, fire detection ...
- Delivers data at 250 m, 500 m and 1000 m pixel resolution
- LST error rate: $< 1 \text{ K} \pm 0.7 \text{ K}$

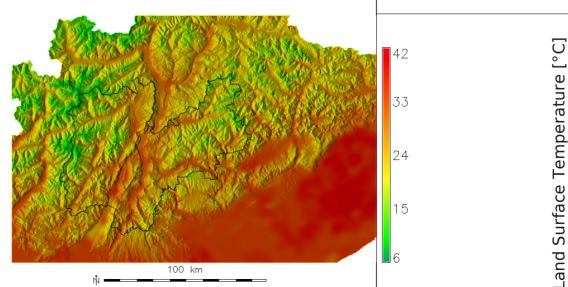
MODIS/Terra satellite (EOS-AM):

- startet in Dec. 1999
- overpasses at circa 10:30 + 22:30 solar local time

MODIS/Aqua satellite (EOS-PM):

- startet in May 2002
- overpasses at circa 13:30 + 01:30 solar local time
- 4 overpasses in 24h
- data availability after ~72h

Ecological Indicators from satellite data: Temperature


Base product: Land surface temperature (LST)

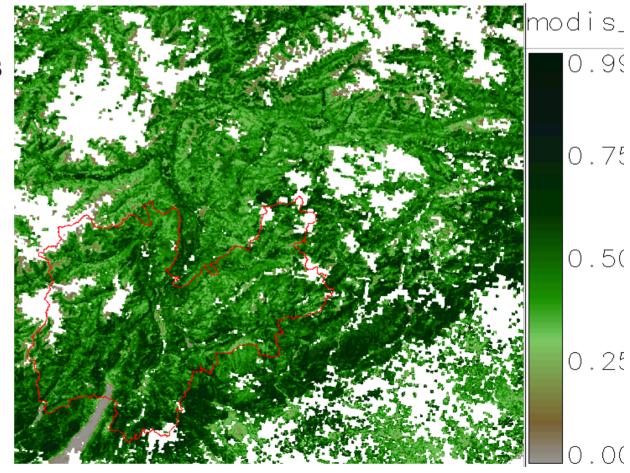
LST derived indices relevant for disease monitoring and risk modeling: (through time series analysis in GIS)

- late frost periods: relevant for masting of trees and seed production
- growing degree days (GDD) for phenological status
- hot/cold summers through mean temperature differences
- autumnal temperature decrease, spring warming gradient
- annual/monthly temperature minima/maxima

Trentino LST map 28 June 2006 from Aqua satellite at ~13:30 local time (Deg. Celsius)

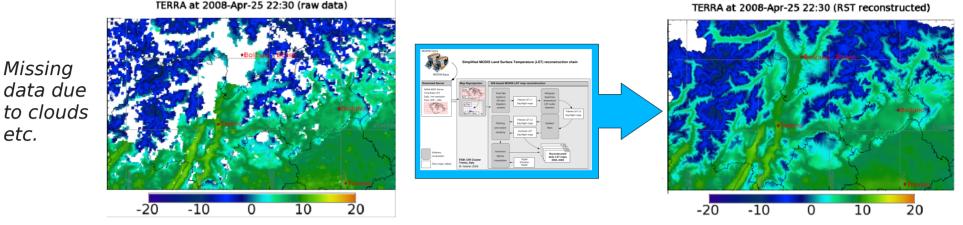
aqua_lst1km20060628.LST_Day_1km.r

Ecological Indicators from satellite data: Phenology


Enhanced Vegetation Index (EVI)

EVI tends to perform better than Norm. Differences Veg. Index (NDVI):

- less prone to saturation
- less sensitive to haze


Derived indices:

- seasonal differences by simple pixel-wise map substraction
- in a localized way:
 - spring/autumn detection
 - length of growing season

Satellite based land surface temperature (LST) map reconstruction: MODIS LST maps

Available now: > 13000 LST maps (4/day)

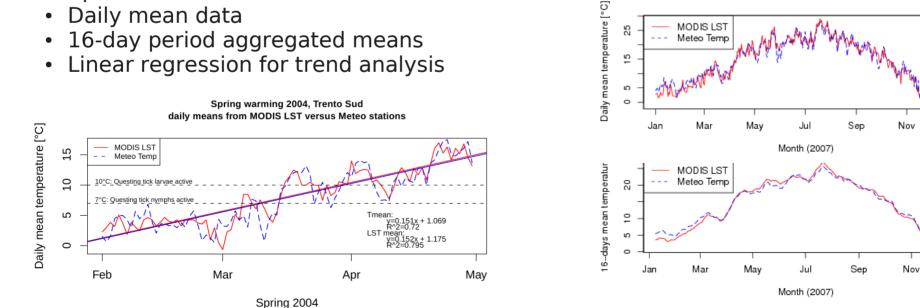
Temperatures 2007 Arco, Italy: daily and 16-days means

Jan

Jan

MODIS LST

Meteo Tem


25

5

Examples for

etc.

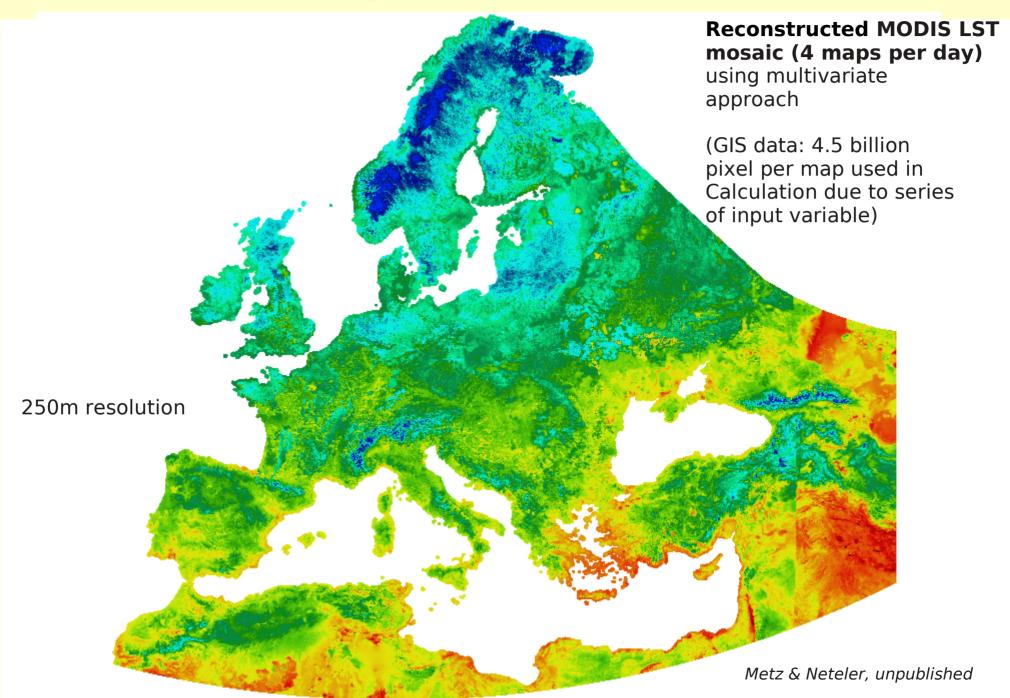
- Daily mean data
- 16-day period aggregated means
- Linear regression for trend analysis

Neteler, M., 2010: Estimating daily Land Surface Temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sensing 2(1), 333-351 [PDF]

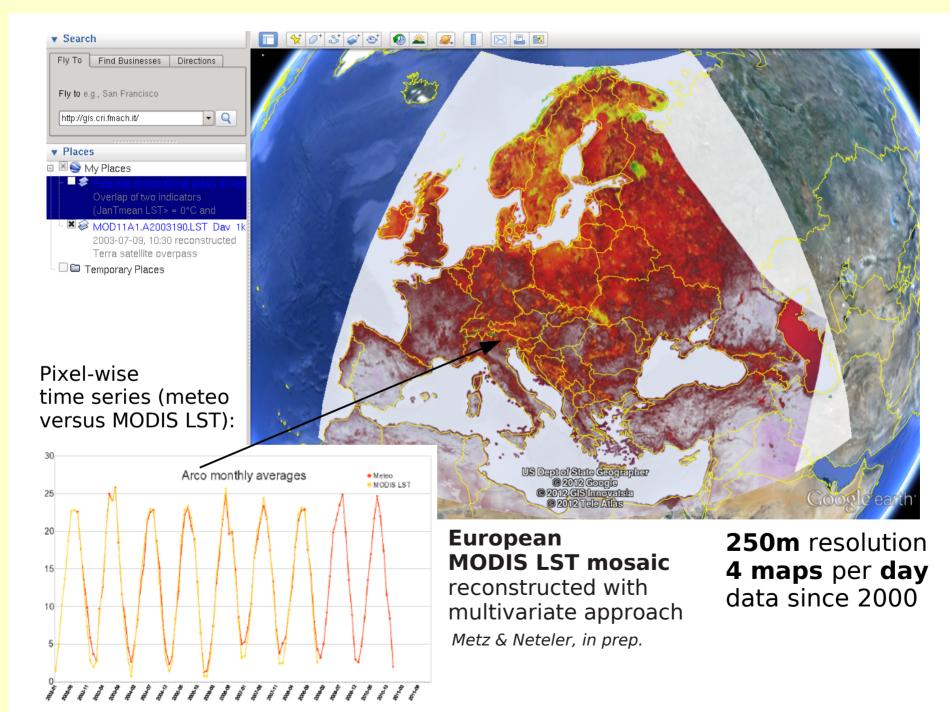
MODIS LST at European scale (filtered mosaic)

MODIS LST mosaic of 20 MODIS LST tiles,

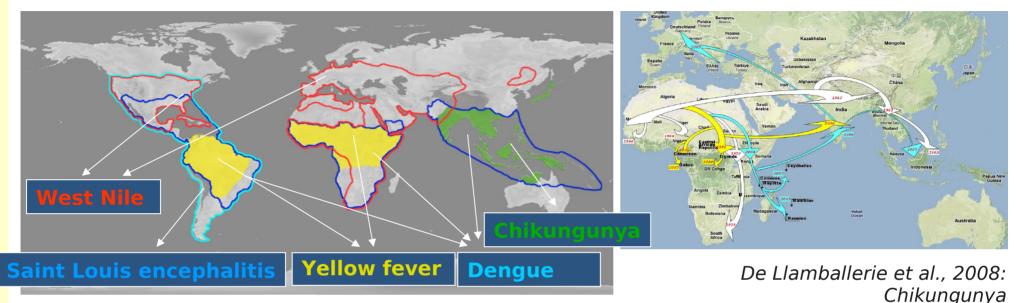
in total 400 million pixels


PROBLEM: no data areas due to clouds

1000m resolution


FEM, Italy

Metz & Neteler, in prep.


MODIS LST at European scale (reconstructed)

The new European daily MODIS LST time series

Spread of the tiger mosquito (Aedes albopictus): infectious disease vector

Roiz 2009

- Tiger mosquito: Disease vector
- Spreads in Europe and elsewhere
- Breeding and transport: In small containers, used tires and lucky bamboo plants
- >200 cases of Chikungunya in northern Italy in 2007 (CHIKv imported by India traveler and was then spread by Ae. albopictus)

Potential distribution of Aedes albopictus from reconstructed Daily MODIS Land Surface Temperature maps

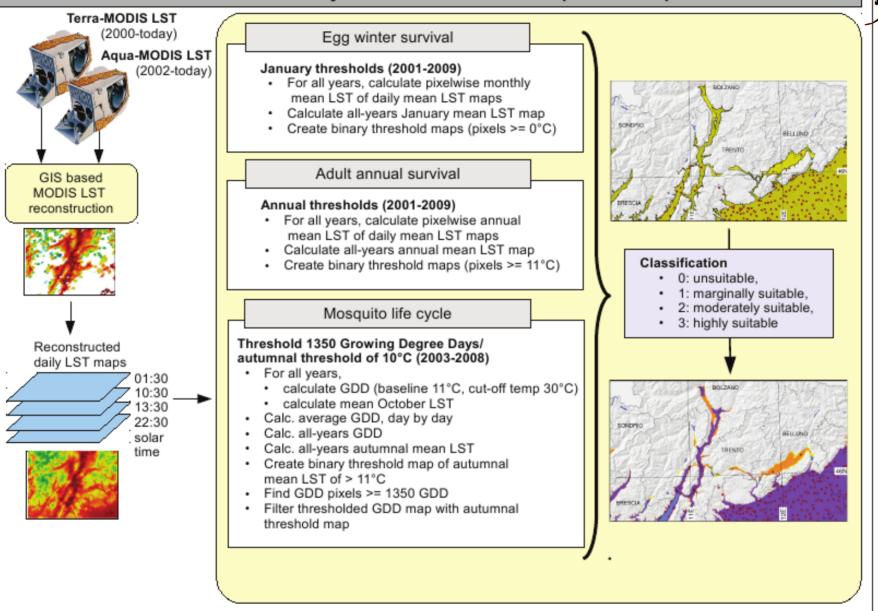
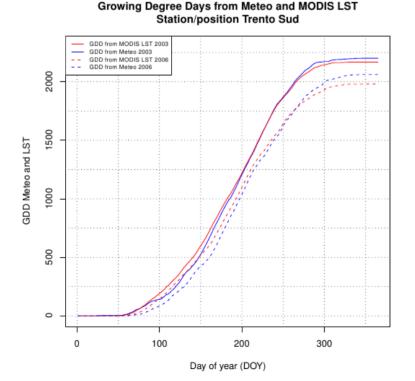


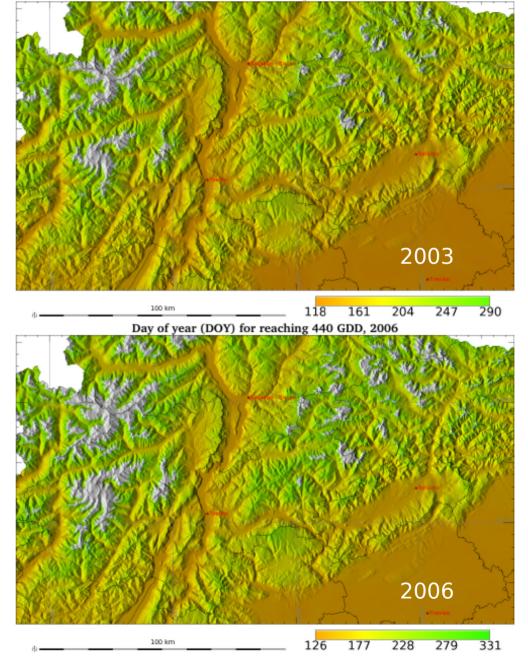
Figure 1 Workflow of aggregating MODIS LST into ecological indicators for the potential distribution of *Ae. albopictus*. The original daily MODIS LST data are reconstructed mapwise and then aggregated into three different ecological indicators used as proxies to predict the potential distribution of *Ae. albopictus*.

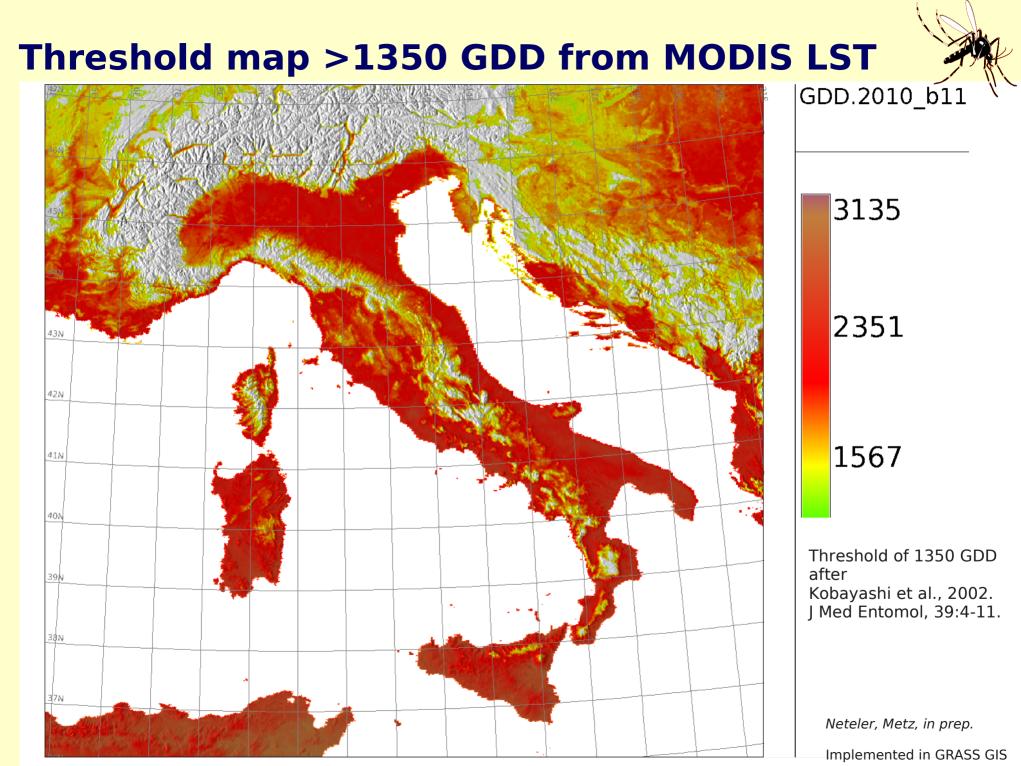
Neteler et al., 2011: Int J Health Geogr, 10:49, http://www.ij-healthgeographics.com/content/10/1/49 Roiz, D., Neteler, M., et al., 2011: Climatic factors ... tiger mosquito. **Plos ONE**, 6(4): e14800

Life-cycle: MODIS LST and GDD

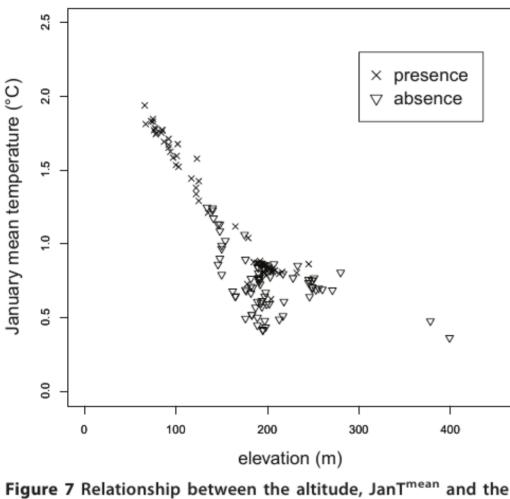


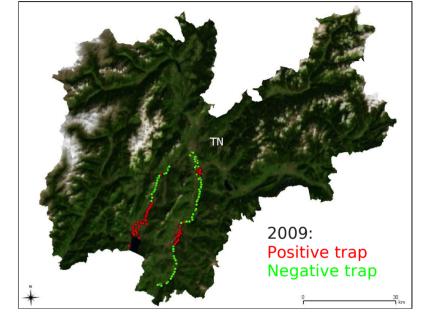
Growing Degree Days


(used for plant or insect growth assessment)


Number of Day-Of-Year (**DOY**) to reach **440** accumulated growing degree days (GDD) in the years 2003 and 2006:

- proxy for life-stage survival analysis of insect
- satellite-derived GDD are delivered as map


Day of year (DOY) for reaching 440 GDD, 2003



Winter survival from MODIS LST Microhabitat distinction

Microhabitat detection from MODIS LST (not possible with ECAD and not easily with interpolated meteorological data)

Figure 7 Relationship between the altitude, JanT^{mean} and the current distribution of *Ae. albopictus*. The absence/presence data and elevations were obtained from traps. The complete data set for this figure is included with the manuscript as additional file 1.

Current and potential distribution Ae. alb.

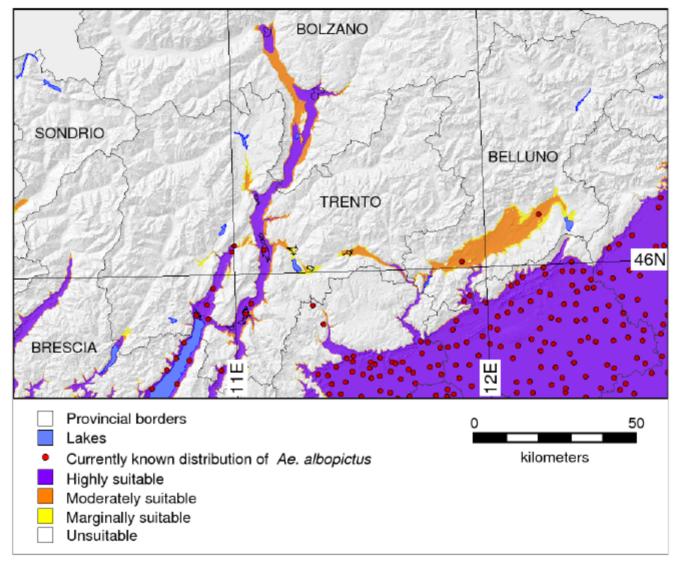
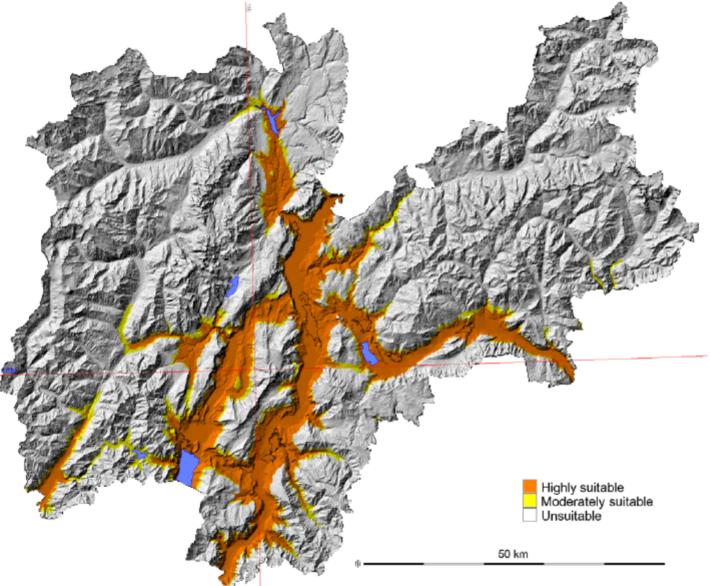
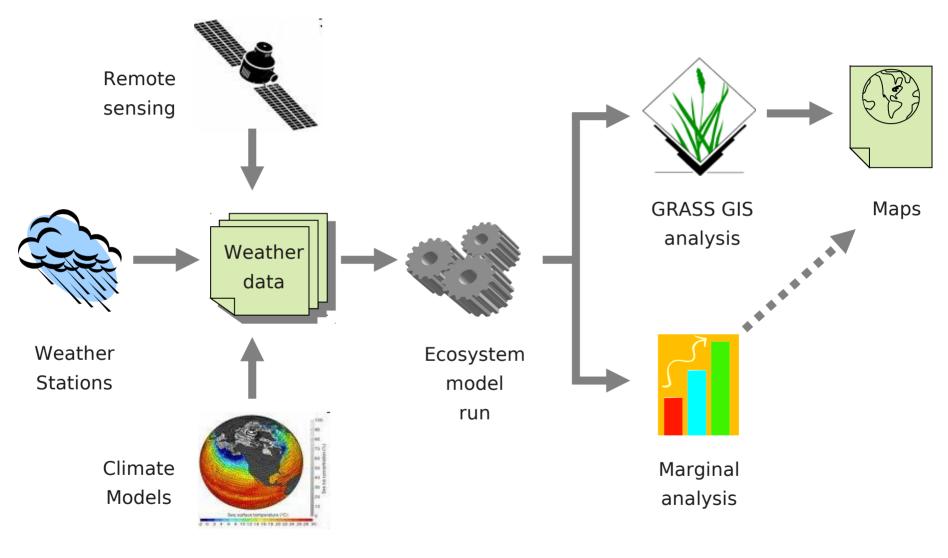



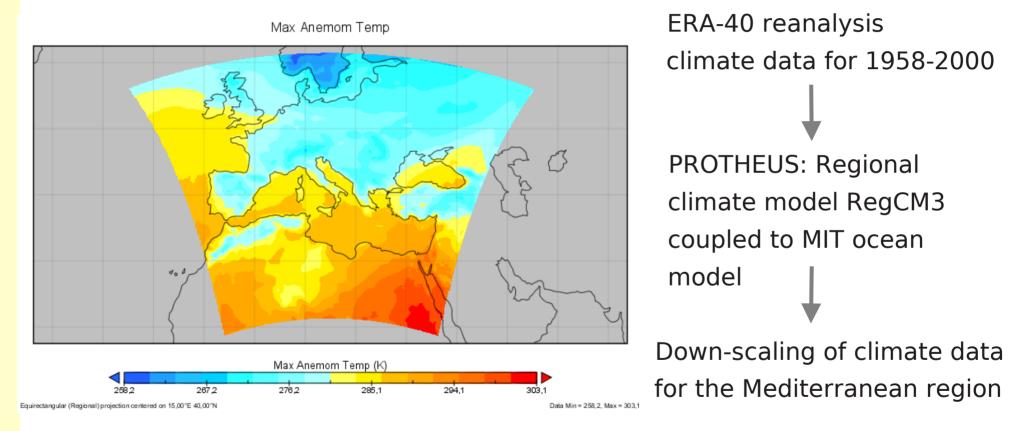
Figure 3 Habitat suitability map of Ae. albopictus in north-eastern Italy. The map is based on classified summary of egg winter survival, annual adult survival, and the areas of successful life cycle completion (see also explanations for Figure 2). Neteler et al., 2011


Future distribution Ae. alb.: 2050 Scenario A2

Potential distribution of *Ae. albopictus* in an A2 scenario for 2050 (IPCC, Eccel et al., 2011, Cafarra et al., 2010). Overlap of both indicators (January mean LST +1,5 °C and Annual mean LST +1 °C) were plotted for the study period and integrated in a final map with 3 categories. (Roiz et al., 2011)

Ecosystem analysis uses site-specific weather, GIS maps and marginal analysis

By Luigi Ponti, ENEA, Italy


Gutierrez et al. 2010

The GlobalChangeBiology project Climate change & Mediterranean agroecosystems http://sites.google.com/site/globalchangebiology/

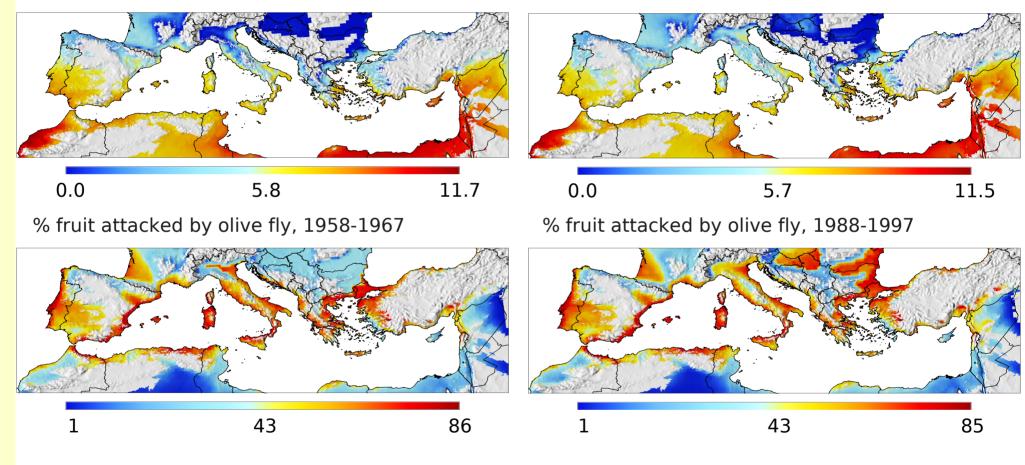
Analysis of Mediterranean olive systems using the PROTHEUS present climate data

By Luigi Ponti, ENEA, Italy

FEM, Italy

PGIS,

The GlobalChangeBiology project Climate change & Mediterranean agroecosystems http://sites.google.com/site/globalchangebiology/

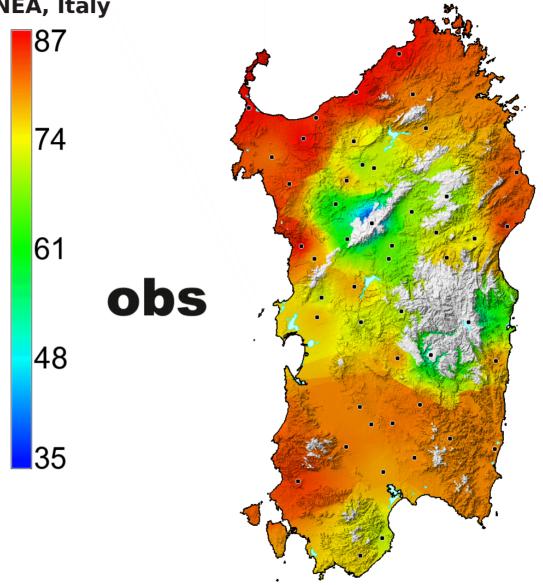

Artale et al. 2010

Multitrophic interactions of olive and olive fly mapped across the Mediterranean

By Luigi Ponti, ENEA, Italy

Average olive yield (kg), 1958-1967

Average olive yield (kg), 1988-1997


Ponti et al. 2009

The GlobalChangeBiology project Climate change & Mediterranean agroecosystems http://sites.google.com/site/globalchangebiology/

Olive fly infestation % in Sardinia under climate warming

By Luigi Ponti, ENEA, Italy

The GlobalChangeBiology project Climate change & Mediterranean agroecosystems http://sites.google.com/site/globalchangebiology/

Ponti et al. 2009

Conclusions

- Emerging diseases need to be considered among the "emerging themes" to be covered by integrated research strategies because of their dramatic impact on well being and economy
- Current and potential distribution of disease vectors (like Ae. Albopictus) can be modelled at high resolution
- Reconstructed daily MODIS LST data provide high accuracy with temporally 4 map per day and spatially 250 m x 250 m pixel resolution
- Almost unlimited possibilities with GRASS and other FOSS4G software thanks to rich interfaces
- User levels: from newcomers to power users
- Software Quality: peer reviewed code, often with academic background

PGIS unit: remote sensing and diseases/vectors

Neteler et al. International Journal of Health Geographics 2011, 10:49 http://www.ij-healthgeographics.com/content/10/1/49

RESEARCH

Open Access

Terra and Aqua satellites track tiger mosquito invasion: modelling the potential distribution of *Aedes albopictus* in north-eastern Italy

Markus Neteler^{1*†}, David Roiz^{2†}, Duccio Rocchini¹, Cristina Castellani¹ and Annapaola Rizzoli¹

Abstract

Background: The continuing spread of the Asian tiger mosquito Aedes albopictus in Europe is of increasing public health concern due to the potential risk of new outbreaks of exotic vector-borne diseases that this species can transmit as competent vector. We predicted the most favorable areas for a short term invasion of Ae. albopictus in north-eastern table using reconstructed daily stability data time series (MODIS Land Surface Temperature mans LSD. We reconstructed

OPEN a ACCESS Freely available online

PLoS one

Climatic Factors Driving Invasion of the Tiger Mosquito (*Aedes albopictus*) into New Areas of Trentino, Northern Italy

David Roiz^{1,2}*⁹, Markus Neteler^{1,9}, Cristina Castellani¹, Daniele Arnoldi¹, Annapaola Rizzoli¹

1 Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, Research and Innovation Centre, S. Michele all' Adige, Italy, 2 Wetland Ecology Department, Doñana Biological Station (CSIC), Seville, Spain

Abstract

Background: The tiger mosquito (Aedes albopictus), vector of several emerging diseases, is expanding into more northerly latitudes as well as into higher altitudes in northern Italy. Changes in the pattern of distribution of the tiger mosquito may affect the potential spread of infectious diseases transmitted by this species in Europe. Therefore, predicting suitable areas of future establishment and spread is essential for planning early prevention and control strategies.

Methodology/Principal Findings: To identify the areas currently most suitable for the occurrence of the tiger mosquito in the Province of Trento, we combined field entomological observations with analyses of satellite temperature data (MODIS Land Surface Temperature: LST) and human population data. We determine threshold conditions for the survival of overwintering eggs and for adult survival using both January mean temperatures and the 11°C threshold for annual mean temperatures provide the best predictors for identifying the areas that could potentially support populations of this mosquito. In fact, human population density and distance to human settlements appear to be less important variables affecting mosquito distribution in this area. Finally, we evaluated the future establishment and spread of this species in relation to predicted climate warming by considering the A2 scenario for 2050 statistically downscaled at regional level in which winter and annual temperatures by 1.5 and 1°C, respectively.

Remote Sens. 2010, 2, 333-351; doi:10.3390/rs1020333

OPEN ACCESS Remote Sensing

ISSN 2072-4292 www.mdpi.com/journal/remotesensing

Article

Estimating Daily Land Surface Temperatures in Mountainous Environments by Reconstructed MODIS LST Data

Markus Neteler

IASMA Research and Innovation Centre, Environment and Natural Resources Area, Fondazione Edmund Mach, 38010 S. Michele all'Adige, TN, Italy; E-Mail: markus.neteler@iasma.it; Tel.: +39-0461-615427; Fax: +39-0461-650956

Received: 1 December 2009; in revised form: 8 January 2010 / Accepted: 11 January 2010 / Published: 18 January 2010

REVIEW ARTICLES

Lyme borreliosis in Europe

A Rizzoli (annapaola.rizzoli@iasma.it)",", H C Hauffe", G Carpi', G I Vourc'h', M Neteler', R Rosà'

- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (Trento), Italy
- 2. Both authors contributed equally to this work.
- 3. Unité d'Epidémiologie Animale, İnstitut National de la Recherche Agronomique (INRA), St Genès Champanelle, France

Citation style for this article: izzoli A. Hauffe HC. Carpi G. Vourc'h Gl. Neteler M. Rosà R. Lyme borreliosis in Europe

Euro Surveill. 2011;16(27):pii=19906. Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19906

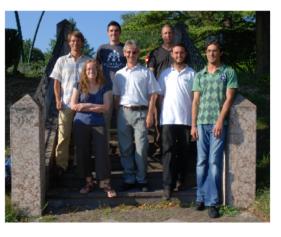
Article published on 7 July 2011

Despite improvements in prevention, diagnosis and treatment, Lyme borreliosis (LB) is still the most common arthropod-borne disease in temperate regions of the northern hemisphere, with risk of infection associated with occupation (e.g. forestry work) and certain outdoor recreational activities (e.g. mushroom collectis unknown (see [3] for a review). Less controversial is the fact that the geographical distribution of LB is still expanding, especially towards higher altitudes and latitudes ([3] and references therein). Moreover, LB is likely to become an increasingly relevant health risk in the near future due to complex interactions between

http://gis.cri.fmach.it/publications/

FEM GIS and Remote sensing unit: Spatial modelling of disease vectors, biodiversity and beyond

http://gis.cri.fmach.it



People

The GIS and Remote Sensing Unit team:

- <u>Luca Delucchi</u> (GIS technician)
- <u>Anne Ghisla</u> (PhD student)
- <u>Dr. Markus Metz</u> (Post-Doc)
- <u>Dr. Markus Neteler</u> (head)
- <u>Dr. Duccio Rocchini</u> (Researcher)
- <u>Dr. Roberto Zorer</u> (Researcher)

PGIS group as of June 2011 (with Javier as guest)